Sturm Sequences and the Eigenvalue Distribution of the Beta - Hermite Random Matrix Ensemble
نویسندگان
چکیده
This paper proposes that the study of Sturm sequences is invaluable in the numerical computation and theoretical derivation of eigenvalue distributions of random matrix ensembles. We first explore the use of Sturm sequences to efficiently compute histograms of eigenvalues for symmetric tridiagonal matrices and apply these ideas to random matrix ensembles such as the 0-Hermite ensemble. Using our techniques, we reduce the time to compute a histogram of the eigenvalues of such a matrix from O(n 2 + m) to O(mn) time where n is the dimension of the matrix and m is the number of bins (with arbitrary bin centers and widths) desired in the histogram. Our algorithm is a significant improvement because m is usually much smaller than n. This algorithm allows us to compute histograms that were computationally infeasible before, such as those for n equal to 1 billion. Second, we give a derivation of the eigenvalue distribution for the 3-Hermite random matrix ensemble (for general 3). The novelty of the approach presented in this paper is in the use of Sturm sequences to derive the distribution. We derive an analytic formula in terms of multivariate integrals for the eigenvalue distribution and the largest eigenvalue distribution for general P by analyzing the Sturm sequence of the tridiagonal matrix model. Finally, we explore the relationship between the Sturm sequence of a random matrix and its shooting eigenvectors. We show using Sturm sequences that, assuming the eigenvector contains no zeros, the number of sign changes in a shooting eigenvector of parameter A is equal to the number of eigenvalues greater than A. Thesis Supervisor: Alan Edelman Title: Professor of Applied Mathematics Acknowledgments I owe a large debt of gratitude to James Albrecht for his help with this thesis especially with Section 5.2 and Appendix A. I also thank Brian Rider for his help regarding Chapter 6. Many thanks to Alan, my research advisor, for his continual cheerful guidance and insight. And, of course, I want to thank my family for their tremendous love and support. I especially thank my wife, Jessica, for putting up with me and my strange sleeping habits. This work was supported by the National Science Foundation under grants DMS 0411962.
منابع مشابه
Sturm Sequences and Random Eigenvalue Distributions
This paper proposes that the study of Sturm sequences is invaluable in the numerical computation and theoretical derivation of eigenvalue distributions of random matrix ensembles. We first explore the use of Sturm sequences to efficiently compute histograms of eigenvalues for symmetric tridiagonal matrices and apply these ideas to random matrix ensembles such as the β-Hermite ensemble. Using ou...
متن کاملApproximation of Rectangular Beta-Laguerre Ensembles and Large Deviations
Let λ1, · · · , λn be random eigenvalues coming from the beta-Laguerre ensemble with parameter p, which is a generalization of the real, complex and quaternion Wishart matrices of parameter (n, p). In the case that the sample size n is much smaller than the dimension of the population distribution p, a common situation in modern data, we approximate the beta-Laguerre ensemble by a beta-Hermite ...
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملLarge n Limit of Gaussian Random Matrices with External Source , Part I
We consider the random matrix ensemble with an external source 1 Zn e−nTr( 1 2M −AM)dM defined on n×n Hermitian matrices, where A is a diagonal matrix with only two eigenvalues ±a of equal multiplicity. For the case a > 1, we establish the universal behavior of local eigenvalue correlations in the limit n → ∞, which is known from unitarily invariant random matrix models. Thus, local eigenvalue ...
متن کاملSturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter
This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008